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Abstract

Stochastic growth processes give rise to diverse and intricate structures everywhere in
nature, often referred to as fractals. In general, these complex structures reflect the
non-trivial competition among the interactions that generate them. In particular, one
of the most fundamental models to study these systems has been the paradigmatic
Laplacian-growth model that exhibits a characteristic fractal to non-fractal morpho-
logical transition as the non-linear effects of its growth dynamics increase. So far,
a complete scaling theory for this type of transitions, as well as a general analytical
description for their fractal dimensions have been lacking. In this work, we show
that despite the enormous variety of geometrical shapes, these morphological transi-
tions have clear universal scaling characteristics. Using a fundamental particle-cluster
aggregation models in two-dimensions, we introduce four non-trivial fractal to non-
fractal transitions that capture all the main features of fractal growth. By performing
the scaling analysis to the respective clusters and by constructing a dynamical model
for their fractal dimension, we show that these morphological transitions are well
described by a general dimensionality function regardless of their space symmetry-
breaking mechanism, including the Laplacian case itself. Moreover, under the appro-
priate variable transformation this description is universal, i.e., independent of the
transition dynamics, the initial cluster configuration, and the embedding Euclidean
space.
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Resumen

Los procesos de crecimiento estocástico dan origen a diversas e intrincadas estructuras
por todas partes en la naturaleza, que comunmente se les conoce como fractales. En
general, estas complejas estructuras reflejan la competencia no trivial de las interac-
ciones que las generan. En particular, uno de los modelos fundamentales usados para
estudiar estos sistemas ha sido el paradigmático modelo de crecimiento Laplaciano, que
exhibe una caracteŕıstica transición morfológica fractal/no-fractal al incrementar los
efectos no-lineales de su dinámica de crecimiento. Hasta ahora, no se ha desarrollado
una teoŕıa completa de escalamiento para este tipo de transiciones, aśı como una de-
scripción general anaĺıtica para dimensiones fractales. En este trabajo se muestra que,
a pesar de la enorme variedad de formas geométricas, estas transiciones morfológicas
tienen claras y universales caracteŕısticas de escalamiento. Empleando modelos fun-
damentales de agregación part́ıcula-cluster en dos dimensiones, presentamos cuatro
transiciones no-triviales fractal/no-fractal que capturan las principales caracteŕısticas
de crecimiento fractal. Haciendo un análisis de escalamiento a los respectivos clusters
y construyendo un modelo dinámico para su dimensión fractal, mostramos que estas
transiciones morfológicas son bien descritas por una función general de dimensionali-
dad, sin importar el mecanismo de rompimiento de simetŕıa involucrado, incluyendo
el caso Laplaciano mismo. Más aún, bajo la transfomación de variables adecuada,
esta descripción es universal, esto es, independiente de la dinámica de transición, la
configuración inicial y el espacio Euclideano en las que existen.
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Introduction

“Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth,

nor does lightning travel in a straight line. More generally,
many patterns are so irregular and fragmented, that,

Nature exhibits not simply a higher degree but
an altogether different level of complexity.”

– Benoit B. Mandelbrot

In nature, fractal structures emerge in a wide variety of systems as an optimiza-
tion of specific growth processes characterized by non-trivial self-organizing and self-
assembling processes of pattern formation, restricted to the entropic and energetic
conditions of their environment [1, 2, 3, 4]. Even more, the fractality of these sys-
tems determines many of their physical, chemical and/or biological properties, then,
to comprehend the mechanisms that originate it, is very important in many areas of
science and technology. One striking feature of these systems are the morphological
transitions that they undergo as a result of the interplay of the entropic and energetic
aspects of their growth dynamics that ultimately manifest in the geometry of their
structure [5]. It is here where, despite their complexity, great insight can be obtained
into the fundamental elements of their dynamics from the powerful concepts of fractal
geometry [6, 7]. Such is the case of the Laplacian growth or Dielectric Breakdown
Model (DBM) [8, 9], that has been the model of reference to study these systems,
with important contributions to our understanding of far-from-equilibrium growth
phenomena, to such extent that seemingly unrelated patterns found in nature, such
as river networks or bacterial colonies, are understood in terms of a single framework
of complex growth [10, 11]. However, a complete scaling theory of growth far-from-
equilibrium has been missing and consequently, a comprehensive description of the
fractality of systems that exhibit fractal to non-fractal morphological transitions is
missing as well [7, 12].

One the most successful approaches used to tackle this problem has been the use of
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xii INTRODUCTION

stochastic growth models of particle aggregation. In general, aggregation phenomena
are out-of-equilibrium processes of fractal pattern formation that are ubiquitous in
nature [3], and since the introduction of the diffusion-limited aggregation (DLA) and
ballistic aggregation (BA) models, a plethora of studies have been developed trying
to understand the ultimate aspects of the aggregation dynamics that give rise to self-
similar or fractal clusters, the relationship of this fractality with their physical and
chemical properties, and the most effective methods and techniques to control fractal
growth. In this work, in order to clarify important aspects of the theory of fractal
to non-fractal morphological transitions and by following this statistical approach to
fundamental particle-cluster aggregation dynamics, we present a general theoretical
model for the scaling or fractality of these systems. As the main result, we show
that regardless of their space symmetry-breaking mechanism, initial configuration and
Euclidean embedding space, these morphological transitions are well described by a
universal dimensionality function, including the Laplacian one. The presentation of
these results is made as follows:

In Chapter 1, we present the fundamental models of fractal growth used: the
DLA, BA and mean-field (MF) aggregation models, as well as the DBM as the first
full morphological transition within the context of Laplacian growth. This includes,
an account of the numerical and theoretical results reported over the years for the
fractal dimension of the DLA and DBM in two and higher dimensions. In Chapter
2, by identifying the basic dynamical elements that drive fractal growth and under
two modelling schemes, we introduce four two-dimensional non-trivial fractal to non-
fractal transitions that are able to reproduce all the main morphologies observed in the
literature. These transitions go from initial DLA or BA clusters towards linear struc-
tures characteristic of the MF model as function of one control parameter. For each of
these, the scaling of the clusters is measured for different values of their control param-
eters using two standard methods: the two-point density correlation function and the
radius of gyration. In Chapter 3, we introduce a general dimensionality equation that
is able to describe the measured fractal dimensions and scaling of clusters generated
form the previous models, including the DBM. This equation unifies the description of
these transitions by allowing their classification using a single and characteristic pa-
rameter. Furthermore, it clarifies important aspects of nature of this transitions, such
as their criticality, and most remarkably, it shows that the set of fractal dimensions
that characterize each transition collapse into a single universal curve, independently
of the growth process, initial cluster configuration, and embedding Euclidean space.
Finally, in Chapter 4, we present a summary of the results of this work.



Chapter 1

Fractal Growth Models

1.1 Stochastic growth

The diversity of fractal morphologies in nature is just matched by the enormous
amount of out-of-equilibrium processes that generate them, making the issue of es-
tablishing a unified and comprehensive theory of fractal growth a great challenge
[2, 5, 6, 7]. However, it often happens that a simple model comes to unify diverse
phenomena that once seemed to be completely unrelated. Such is the case of the
Laplacian growth theory and its emblematic dielectric breakdown model (DBM), a
paradigm of out-of-equilibrium growth that, due to its diversity of fractal morpholo-
gies, has received significant attention in diverse scientific and technological fields,
from the oil industry, through bacterial growth, to even cosmology [10, 11, 12], with
relevant applications in current neuroscience and cancer research [36, 37, 39]. There-
fore, a precise characterization of this fundamental model in terms of its fractality is
of the utmost importance.

1.1.1 DLA and BA models

In a generic growth process, the volume and surface of a given structure embedded
in a Euclidean space of dimension d, can be described in terms of simple power-laws,
V ∝ rD and dV/dr ∝ rα respectively, where r is a characteristic radius, and D is the
scaling or fractal dimension, with co-dimension α = D − 1. In the Laplacian theory,
the growth probability at a given point in space, µ, is given by the spatial variation
of a scalar field, φ, i.e., µ ∝ |∇φ|, where this scalar field is associated to the energy
landscape of the growing surface of the cluster.

An example of such processes is the paradigmatic DLA model, where particles
randomly aggregate one-by-one to a seed particle to form a cluster [10, 11, 12] (see
Fig. 1.1). It has been found that the structure that emerges from this process exhibits

1



2 CHAPTER 1. FRACTAL GROWTH MODELS

self-similar properties described by a D only dependent on the Euclidean dimension, d,
of its embedding space [75, 76]. This issue has been the subject of extensive research,
not only for the well-known two-dimensional case, where D = 1.71 (from numerical
[45, 46, 47, 17, 48] and theoretical [56, 57, 59, 60, 62] results, see also Tables 1 and 2 in
Appendix A), but in higher dimensions as well (although simulations [64, 65, 66, 67]
and theory [68, 69, 70, 71, 72, 73, 74] are not in the best agreement, see Table 3 in
Appendix A).

Figure 1.1: Schematic diagram of the fundamental aggregation models (top row)
used in this work, where particles, that are launched one-by-one into the system
from rL with uniform probability in position and direction, (a) follow straight-line
trajectories before aggregation in BA, (b) perform a random walk in DLA, and (c)
get radially attached to the closest particle in the cluster as a result of an infinite-
range radial interaction in MF. The morphology of MF emerge solely from its long-
range interaction, as opposed to the stochastic BA and DLA. The corresponding
characteristic cluster with its fractal dimension D0 are shown in the bottom row.

Furthermore, when it was found that D is highly dependent on the mean square
displacement of the particles’ trajectories before aggregation, the theory has been ex-
tended to consider a more general and interesting growth process [13, 14, 15, 16, 17]
in which the mean-square displacement of the particles’ trajectories, as a control pa-
rameter, generates a continuous morphological transition that can be neatly described
through the fractal dimension of the walkers’ trajectories, dw. This transition goes
from a compact cluster with D = d for dw = 1, as expected for BA dynamics, to



1.2. MODELS FOR THE FRACTAL DIMENSION 3

the DLA fractal for dw = 2 [18]; see Fig. 1.1. This BA-DLA transition has been
reproduced in diverse and equivalent aggregation schemes, e.g., of wandering particles
under drift [13], or with variable random-walk step size [14], by imposing directional
correlations [15, 16], and through probabilistically mixed aggregation dynamics [17].

1.1.2 Mean-Field (MF) aggregation model

On the opposite side of the DLA and BA models (which can be regarded as pure-
stochastic aggregation models), there is an immediate extension that incorporates the
effects of long-range attractive interactions. This is the mean-field aggregation model,
where particles aggregate to the closest particle in the cluster as soon as they enter
into the system in response to an infinite or system-size attractive interaction (see Fig.
1.1).

1.1.3 Dielectric Breakdown Model (DBM)

However, one of the most challenging aspects of the theory arises when the growth is
not purely limited by diffusion, e.g., when it takes place under the presence of long-
range attractive interactions, where strong screening and anisotropic effects must be
taken into account. In this case, the growth probability has been generalized to the
form µ ∝ |∇(φ)|η, where η ≥ 0 is the growth probability parameter, a real number
associated to the net effect of all non-linear interactions [8, 24, 9, 26, 20, 21, 25, 40,
41, 42] (see Fig. 2). For a given embedding Euclidean space of dimension d, this
process generates a characteristic morphological transition as a function of η, that
goes from an initial compact structure with D = d for η = 0, associated with Eden
clusters, passing through DLA fractals for η = 1, to a linear cluster with D = 1 as
η → ∞. In addition, it has been suggested that the transition to the last one occurs
at a critical value η ≈ 4, where this criticality is understood in terms of the fractality
of the system, i.e., the value for η at which D ≈ 1 [20, 21, 19]. Nonetheless, the use
of the fractal dimension D as an order parameter, able to describe the criticality of
these transitions, still needs some clarification.

1.2 Models for the fractal dimension

1.2.1 Mean-field approximations

Although with important limitations, the generalized Honda-Toyoki-Matsushita mean-
field equation [75, 76, 23], is among the best analytical results to describe the fractality
of these models. In the case of DLA where D, only depends on the Euclidean dimen-
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sion, d, of its embedding space, D(d) given by,

D(d) =
d2 + 1

d+ 1
. (1.1)

For d = 2, this expression predicts D = 5/3 ≈ 1.67, different from the widely reported
and numerically obtained value for off-lattice DLA, D = 1.71.

For the BA-DLA morphological transition, D is related to the dimension of the
walkers’ trajectories, dw, D(d, dw) is given by,

D(d, dw) =
d2 + dw − 1

d+ dw − 1
. (1.2)

Here, for dw = 1 one gets D = d, as expected for ballistic-aggregation dynamics,
whereas for dw = 2, the value D = 5/3 for DLA is recovered.

Finally, in the most general scenario of the DBM, we have that,

DMF(d, dw, η) =
d2 + η(dw − 1)

d+ η(dw − 1)
. (1.3)

For dw = 2, it is intended to describe the DBM in any embedding dimension d. In
particular, for the case d = 2, this expression provides a good qualitative description
of the fractality of the DBM transition, however, due to its mean-field limitations,
it fails to precisely reproduce the reported numerical results for D(η) [26, 25]. For
example, it underestimates the known fractal dimension of DLA clusters for d = 2,
nor does it clearly predict any criticality as suggested. As far as we know, there is
not any analytical result able to fully describe the scaling or fractality of these and
similar processes [7, 12] (see Fig. 3 and Table 4 in Appendix A).
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Figure 1.2: The Laplacian framework. (a) Characteristic morphological and scal-
ing features of the DLA fractal (with its cluster in blue and growing front in red),
for d = 2 (left) and d → ∞ (right) according to the Ball inequality, D ≥ d − 1 [68].
(b) Characteristic features of the DBM for d = 2 and as a function of η (top), with a
generic description of the corresponding growth dynamics (as related to σ) at a small
portion of the growing front (bottom).
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Figure 1.3: DBM and DLA dimensions. (a) Numerical results (Table 3 Appendix
A) for D(d, η) of the DBM for d = 2 and 3 in a log-log plot. (b) Numerical (red) and
theoretical (blue) results (Table 4 Appendix A) for D(d, η = 1), expressed through
∆D = D − (d− 1), of the DLA model.



Chapter 2

Morphological Transitions

2.1 Stochastic/energetic growth dynamics

The fundamental dynamical elements of aggregation that drive the fractal growth are
mainly two: a stochastic one, coming from the particles’ trajectories randomness, and
an energetic one, coming from attractive interactions. With regard to the latter, there
are two physical mechanisms related to these interactions and two models that are
able to reproduce their effects. First, the model we will refer to as λ-model [27], incor-
porates the screening effects associated to long-range attractive interactions (such as
those coming from an attractive radial potential) by means of an effective interaction
radius λ, as illustrated in Fig. 2.1. Second, the model referred here to as the p-model
[28], incorporates anisotropy effects coming from surface-tension-like interactions by
means of a Monte Carlo approach to aggregation using fundamental stochastic and
energetic models as explained bellow and illustrated in Fig. 2.1. Therefore, by con-
trolling the interplay of any of these two mechanisms with a pure stochastic model
(in this case the DLA or BA models), one is able to generate fractal to non-fractal
morphological transitions.

There is an additional method to construct such morphological transitions that
does not incorporates the energetic element, at least in an explicit manner. This
method is based on the concept of penetration length and active growing front and,
as the previously introduced models, it uses the BA and DLA models. However, this
method will not be discussed here, nonetheless, some preliminary results are shown in
Appendix C.

2.1.1 BA/DLA-MF (λ-) model

In the first approach to morphological transitions, we will consider the case when long-
range attractive interactions are introduced in the growth dynamics. In this case, the

7



8 CHAPTER 2. MORPHOLOGICAL TRANSITIONS

Figure 2.1: Schematic diagrams of the energetic aggregation schemes. For the λ-
model: (a) every particle in the cluster is provided with an effective radius of aggre-
gation λ. (b) A particle “collides” with the cluster when its trajectory intersects for
the first time the interaction boundary of any aggregated particle. (c) The particle
is aggregated to the closest particle along its direction of motion. This is determined
by the position of the aggregated particles projected onto the direction of motion of
the incoming particle. For the p-model: (d) a Monte Carlo approach to aggregation is
established through the variable p ∈ [0, 1], that controls the probability of aggregation
under MF dynamics.

way to obtain self-similar clusters, that is, clusters with a single fractal dimension, is
to maintain a proper balance between the energetic and entropic contributions to the
growth process. This can be done by considering an aggregation radius, λ, associated
with the range of the interaction for each particle in the growing cluster.

For example, for λ = 1, or direct-contact interaction, the usual DLA or BA models
are recovered, see Figs. 2.2 and 2.3. When λ > 1, the attractive interactions modify
the local morphology of the aggregates, leading to a more stringy structure. Two well
defined features emerge due to the interplay of the long-range interactions and the
way particles approach the cluster (in relation to their trajectories): a multiscaling
branching growth and a crossover in fractality, from D → 1 (as λ → ∞) to D = D0

(when N →∞).

It can be appreciated that this growth presents three well defined stages. In the
first one, the growth is limited by the interactions and is characterized by D → 1 as
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Figure 2.2: (a) Multiscaling aggregates based on DLA, containing N = 150 × 103

particles each, for λ = 1, 10, 100 and 1000 units, visualized at 5%, 10%, 30% and
100% of their total size. The blue squares display the multiscaling evolution of the
structure. (b) Radius of gyration, Rg, and (c) fractal dimension, D, versus the number
of aggregated particles, N , in log-log and lin-log plots, respectively. Notice that, when
λ → ∞, the structure of the aggregates tends to MF (D = 1). (d) Evolution of
the growing front for the first two stages of growth. (e) Typical structure of a MF
aggregate.

λ → ∞. This is due to the fact that the radial size of the cluster is small compared
to λ. In consequence, the individual interaction regions of the aggregated particles
are highly overlapped, forming an almost circular envelope or effective boundary of
aggregation around the cluster. This makes the last aggregated particles the most
probable aggregation point in the cluster for the next incoming particle. Because of
this, there is a tendency for the clusters to develop three main arms or branches, clearly
seen as λ→∞. This structural feature is reminiscent of a mean-field (MF) behavior.
In the second stage, clusters exhibit a transition in growth dynamics. Here, the
envelope starts to develop small deviations from its initial circular form, with typically
three main elongations or growth instabilities associated with the main branches.
When the distance between the tips of two adjacent branches becomes of the order
of λ, a bifurcation process begins, generating multiscaling growth. Then, when the
interactive envelope develops a branched structure itself, particles are able to penetrate
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Figure 2.3: (a) Multiscaling aggregates based on BA, containing N = 300 × 103

particles each, for λ = 1, 10, 100 and 1000 units, visualized at 5%, 10%, 30% and 100%
of their total size. (b) Radius of gyration, Rg, and (c) fractal dimension, D, versus
the number of aggregated particles, N , in log-log and lin-log plots, respectively. (d)
Evolution of the growing front for the first two stages of growth. (e) Typical structure
of a MF aggregate.

into the inner regions of the aggregate and another transition in growth dynamics
takes place, from interaction-limited to trajectory-limited. In the third stage, when
the distance among the tips of the main branches becomes much larger than λ, growth
is limited by the mean squared displacement of the wandering particles. In this case,
the asymptotic value D = D0 and the main features in the global structure of the
cluster are remarkably recovered as N →∞, inheriting the main characteristics of the
entropic aggregation-model used, either DLA or BA. That is, even though interactions
leave a strong imprint in the local structure and fractality of the clusters, the stochastic
nature of the particle trajectories will ultimately determine their global characteristics.

However, taking into account that the spatial size of the clusters is proportional to
the radius of gyration Rg ∝ N1/D, the desired balance between entropic and energetic
forces — the latter related to the long-range attractive interaction and to the param-
eter λ — can be achieved by scaling the interaction range itself with the number of
particles in the cluster through λ(N) = λ0N

ε, where λ0 is fixed to one, while ε is
the scaling parameter that takes values in [0, 1]; we will refer to ε as the branching
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Figure 2.4: In (a) and (b), aggregates grown with specific values of ε in the interval
[0.01, 1] with the λ-model (top row) and log-log plots for Rg (middle row) for (a)
BA and (b) DLA with N = 105 particles. One can appreciate the difference in
the morphology of these monofractal-aggregates with respect to ε. Additionally, the
specific entropic and energetic contributions to the clusters fractal dimension D(ε) are
shown in the bottom panes. (c) Clusters based in BA (left) and DLA (right) with the
same fractal dimension, from top to bottom D = 1.51 and 1.31, grown with a very
high precision around the desired value.

parameter. Given a fixed value of ε and this choice for λ(N), every aggregate grown
under these conditions has a precise and uniquely defined fractal dimension D = D(ε).
In fact, using D(ε) for different values of ε, one can define the entropic and energetic
ratios given by fS = (D(ε)− 1)/(D0− 1) and fE = 1− fS , respectively, that quantify
the specific entropic and energetic contribution to the fractal dimension of the clusters
(see Fig. 2.4). Here, one can clearly appreciate the transition in growth regimes from
entropic, when ε → 0, to energetic, as ε → 1, and the non-trivial interplay between
them to generate each cluster with a specific dimensionality.

Additionally, this model allows one to estimate ε(D), in order to grow aggregates
with any prescribed fractal dimension D in [1, D0], once the underlying entropic model,
DLA or BA, is selected. As such, we are no longer restricted to the purely entropic
models of fractal growth with a constant λ, as the energetic contribution of the long-
range attractive interactions is maintained through the varying λ(N), enabling one
to explore in a continuous manner the full range of clusters with fractal dimensions
in [1, D0]. Nonetheless, the purely entropic contribution of the underlying models
(DLA or BA) have two important contributions to the clusters’ structure: first, they
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establish an upper limit to the fractal dimensionality (D0), and second, they define a
characteristic morphology to the clusters (that of DLA or BA). This kind of control
over the clusters’ fractal dimension and the range it spans, as well as over the mor-
phology of the clusters, has not been obtained before under any other related scheme
of fractality tuning [27].

2.1.2 BA/DLA-MF (p-) model

In the second approach, a general stochastic aggregation process can be modelled
under a Monte Carlo scheme involving three fundamental and simple off-lattice mod-
els of particle-cluster aggregation. On the one hand, the well-known BA and DLA
models provide disordered/fractal structures through their stochastic (entropic) dy-
namics. On the other, we introduce a mean-field (MF) model of long-range interactive
particle-cluster aggregation [27, 28], that provides the most energetic (and noiseless)
aggregation dynamics that, simultaneously, acts as the main source of anisotropy.
Then, the statistical combination of these models results in off-lattice DLA-MF and
BA-MF dynamics, whose morphological transitions can be controlled by the mixing
parameter p ∈ [0, 1], associated with the probability or fraction of particles aggregated
under MF dynamics, p = NMF/N , where N is total number of particles in the cluster.
Therefore, as p varies from p = 0 to p = 1, it generates two non-trivial transitions
from fractals (DLA) or fat fractals (BA) with fractal dimension D = D0, to non-fractal
clusters with D = 1 (MF), that capture all the main morphologies of fractal growth
[6] (see Fig. 2.5).
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Figure 2.5: Clusters of 1.5 × 105 particles grown with the indicated values of p, are
shown at different magnifications for the (a) DLA-MF and (b) BA-MF transitions.
Particles aggregated under DLA/BA are coloured in light-blue while those through MF
in black. These transitions exhibit fast morphological transformations as p increases,
from unstable tip-splitting (DLA) or dense branching (BA), through (inhomogeneous)
dendritic, to needle-like growth (MF). (c-d) C(r) and Rg(N) display deviations from a
well-defined linear behaviour for different p, revealing the inhomogeneity or crossover
effects in these clusters. This is better seen at low scales, where the stochasticity
of DLA or BA dominate the local growth, whereas MF tends to dominate the global
morphology as p→ 1. In both cases, the dynamical growth-regime changes at p ≈ 0.1.
Labels αI , αII , βI and βII indicate the scales used for the scaling analysis.
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Chapter 3

Unified Fractal Description

3.1 Theoretical model for the fractality

Despite the complexity of the transitions mentioned above, a simple model can be
established to describe their fractality or scaling. This is done by considering that
the fundamental dynamical elements that drive the fractal growth are mainly two:
stochastic and energetic. As previously discussed, when the growth dynamics is purely
driven by stochastic processes, as in the case of DLA (η = 1) or BA (similar to η = 0),
the resulting structure is either a fractal (DLA) or a compact fat-fractal (BA) with
D ≤ d. However, when an energetic element is introduced in the growth dynamics,
the fractal dimension of the clusters decreases; for example, D → 1 as η → ∞ in the
DBM.

As such, in the most general case, we consider that these transitions start with
clusters produced by purely stochastic dynamics, with D = D0, where D0 stands
for the fractal dimension of the clusters in this regime. Further on, as energetic
mechanisms that drive spatial symmetry-breaking increase, such as strong non-linear
interactions, for example, these clusters collapse to linear structures. Let us also
consider that all the information regarding the effects of stochastic and energetic
growth-dynamics is encoded in an effective control parameter Φ, allowing us to define
a generalized dimensionality function D(Φ). In this way, as a function of Φ, we require
that D(Φ) = D0 for Φ = 0 and that D(Φ) → 1 as Φ → ∞ along the transition. In
terms of the co-dimension, D̂ = D − 1, we would have D̂(Φ) = D0 − 1 for Φ = 0 and
D̂(Φ) → 0 as Φ → ∞, correspondingly. Additionally, for this kind of morphological
transitions, it has been observed that the dependence of D on the control parameter
is smooth and monotonically decreasing [21, 24, 26, 27, 30, 31]. From this, since
dD/dΦ = dD̂/dΦ is satisfied, the most general solution for the scaling of the clusters
is obtained from dD̂/dΦ = −f(D̂). By expanding f(D̂) as a Taylor series we have:

15
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dD̂/dΦ ≈ −[f0 + f1D̂ + O(D̂2)] ≈ −f0 − f1D̂. Here we have truncated the series
up to the linear term as, again, we expect D̂ to vary smoothly along the transition.
Thus, by integrating on both sides of the equation for a given and finite D̂ and Φ, i.e.,∫ D̂
D̂0
dD̂′/(f0+f1D̂

′) =
∫ Φ

0 dΦ′ and by taking into account the condition that D̂(Φ)→ 0
as Φ→∞, we obtain for D(Φ):

D(Φ) = 1 + (D0 − 1)e−Φ, (3.1)

where the constant f1 has been absorbed in the control parameter Φ.
Under the conditions stated above, equation (3.1) is the most general form for

the fractality of clusters found in morphological transitions, driven by stochastic and
energetic mechanisms. For a particular case, the effective parameter Φ must still be
found and is expected to depend on the parameters of a given system. As explained
below, finding the correct Φ is not trivial and special dynamical conditions over D
will be required. Before considering a more general scenario, let us now show why this
equation is suitable to characterize these systems by considering the DBM mean-field
equation first.

The mean-field result given in equation (1.3) belongs to a special case of the
family of equations given in (3.1). Starting with the first-order approximation in Φ of
equation (3.1), it follows that,

D(1)(Φ) = 1 +
D0 − 1

1 + Φ
=
D0 + Φ

1 + Φ
. (3.2)

Here, by setting D0 = d and from direct comparison with equation (1.3), one is able to
observe that these expressions are equivalent, with Φ being nothing but ΦMF = η(dw−
1)/d. This approximate result makes the relation between the effective parameter Φ
and the actual parameter of the transition (in this case η) more evident and, for a given
d (with dw = 2), it exhibits a linear relation between the parameters, Φ ∝ η, which, as
stated before, does not provide the correct solution to D due to its mean-field nature
[26, 25]. Thus, a more general function for Φ(d, η) is still required.

There is one more condition that should be imposed over D in order to have a
better and more general prescription for Φ. When the fractal dimension of a cluster
goes from D = D0 ≤ d to D = 1 throughout the transition, due to the competition
of the stochastic and energetic elements of the growth dynamics, two regimes can
be clearly defined in the extremes. For this to happen, there will necessarily exist a
regime change in between, where neither the stochastic nor the energetic mechanisms
dominate. Regarding the behavior of D, let us consider that this change in regime is
associated with the point where the second derivative of D with respect to its control
parameter becomes zero. This is, if Φ = Φ(D0, ζ), where ζ is the parameter that
controls the transition of a given system, then, there is an inflection point ζi that
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satisfies, d2D̂/dζ2|ζ=ζi = 0. This inflection condition, from equations (3.1) and (3.2),
translates to [(dΦ/dζ)2−d2Φ/dζ2]|ζ=ζi = 0 and [2(dΦ/dζ)2−(1+Φ)d2Φ/dζ2]|ζ=ζi = 0.

For example, as it can be observed in the DBM mean-field case by identifying ζ
as η, the relation between parameters is linear, i.e., ΦMF = Λζ/D0 (with Λ = dw − 1
and fixed D0), making it impossible to define ζi, as the inflection condition cannot
be satisfied. Therefore, we propose Φ(D0, ζ) = Λζχ/D0 as a general ansatz for Φ,
where Λ and χ are two positive real numbers that are associated with the strength
of the screening/anisotropy-driven effective growth forces, to be determined either
theoretically or phenomenologically according to the system under study. Then, from
equation (3.1), the newly proposed form for the effective parameter Φ(D0, ζ) allows
us to define a general dimensionality function D(D0, ζ), characterized by an inflection
point ζi, associated with a regime change in growth dynamics that satisfies Λζχi /D0 =
(χ − 1)/χ. Additionally, from equation (3.2), the inflection point for the first-order
approximation D(1)(D0, ζ) is characterized by Λζχi /D0 = (χ − 1)/(χ + 1). In this
way, the expressions for the generalized dimensionality function D(D0, ζ) describe
the scaling of the clusters along a continuous morphological transition from D = D0

for Φ(ζ) = 0 towards D = 1 as Φ(ζ) → ∞, with a well-defined regime change in
growth dynamics at ζi. In the following, in order to test our model, we will apply it
to two morphological transitions, namely DLA-MF and BA-MF, newly developed for
this work. Then, we will address the DBM once more, aiming to develop a possible
solution to its fractality. Finally, we will discuss the universal scaling presented by
these systems.

3.1.1 Solution to the ε- and p-transitions

It is necessary to remark that the DLA-MF and BA-MF transitions in the p-model
are characterized by inhomogeneous clusters, i.e., structures with non-constant scaling
as shown in Figures 6c and 6d, in contrast with the ones present in BA-DLA [18,
16] and the DBM [8, 20] characterized by monofractals. These multiscaling features
reveal a crossover behaviour that can be properly quantified by measuring a local or
effective, D(p), at different scales [7], as shown in Figure 7a (details for the values of
the parameter used to produce Figure 7 are presented in Table 1). Analytically, all
measurements can be described by equations (3.1) and (3.2), using Λ and χ as fitting
parameters. Indeed, the data for D(p) as obtained through the scaling analysis of
C(r), is very well described by equation (3.1), whereas equation (3.2) better describes
the results obtained through Rg(N). In the case of the λ-model, the BA/DLA-MF
transitions are governed by the branching parameter, ε, which is equivalent to the
mixing parameter p of the p-model. Nonetheless, in the λ-model, the clusters exhibit
a monofractal behaviour all along the transition as measured by Rg(N). Thus, the
data obtained is then described by equation (3.1) as fitting function. This analysis is
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presented in Fig. 3.1.

Table 3.1: Parameters for the plots of D(p) and D(q) in Figure 7. In the first block
we present the parameter values used to describe D(p,Λ, χ), using equations (3.1) and
(3.2). In the second block, description for the D(q, χ) data obtained through C(r)
and Rg(N). In this prescription, χ is the only free parameter to be determined and,
by construction, all the inflection points are located at q = 1. All of the fittings to
the numerical data were performed using the gnuplot embedded algorithms.

Model Transition Method Scale Λ χ D0 pi, qi
p DLA-MF C(r) αI 15.4 2.24 1.67 0.29

αII 71.5 1.82 0.08
Rg(N) βI 33.8 1.41 1.71 0.03

βII 101.6 1.32 0.01
BA-MF C(r) αI 11.6 1.61 1.94 0.18

αII 45.4 1.38 0.04
Rg(N) βI 124.8 1.95 1.95 0.06

βII 1547.7 2.05 0.02
λ DLA-MF Rg(N) 103 − 105 6.10 1.52 1.70 0.21

BA-MF Rg(N) 103 − 105 6.35 1.43 1.95 0.19
p DLA-MF C(r) - - 1.69 1.67 1.0

Rg(N) - - 1.34 1.71 1.0
BA-MF C(r) - - 1.39 1.94 1.0

Rg(N) - - 1.88 1.95 1.0
λ DLA-MF Rg(N) - - 1.52 1.70 1.0

BA-MF Rg(N) - - 1.43 1.95 1.0

3.1.2 Solution to the DBM transition

At this point in the analysis, it is important to consider the two-dimensional DBM
transition as well. As previously discussed, within the mean-field approximation, we
have that equation (3.2), with ΦMF = η/d (dw = 2), fails to precisely describe the
fractality of the transition (see Fig. 3.2a). However, by means of equation (3.1) and
the general ansatz, Φ(D0, η) = Ληχ/D0, with D0 = d, a better agreement with the
data is achieved. The parameters Λ and χ can be obtained by fitting our model to
the data as before (dashed black curve in Fig. 3.2a), nonetheless, here we also show
how they can be analytically calculated. Setting d = 2, the first parameter Λ can
be obtained by using the well known result for the two-dimensional scaling of DLA,
D = 1.71, that is associated with η = 1 for the DBM. From equation (3.1), this leads
to Λ = −d log((Dη=1 − 1)/(d− 1)) = −2 log(0.71) ≈ 0.685. Then, the χ parameter is
obtained from the dynamical condition imposed over D, given by Ληχi /d = (χ− 1)/χ.
Considering that the DLA fractal (η = 1) can be associated to a particular (possibly
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critical [30, 31]) dynamical state, that defines the regime change of the DBM transition,
from non-fractal (D0 = d, η = 0), through fractal (DLA, η = 1), to non-fractal (D = 1,
η � 1), then we can set ηi = 1, leading to χ = 1/(1 − Λ/d) ≈ 1.52. As it can be
appreciated in Fig. 3.2 (solid black curves), this analytical result agrees very well with
the data for D(η) within a self-contained framework, provided that the DLA state
marks the point of change in regime (see also Table 4 in Appendix A). For the rest of
this work, we will consider ηi = 1 as the transitional point for the DBM.

Particularly, a good insight into this solution can be found within the context of in-
formation theory as applied to out-of-equilibrium growth, where special attention has
been given to the entropy production rate of growing clusters as function of their active
front [30, 31], that in addition, is supported by the fundamental Turkevich-Scher con-
jecture, D = 1 +α∗, that relates the fractal dimension of the cluster to the dimension
of the most active region of its growing front, α∗ = α, indicating that the scaling of the
active perimeter, i.e, the co-dimension, contains the information needed to uniquely
define the fractality of the cluster itself [69, 12]. A measure of this information, and the
connection to entropy production, is found under the formalism of multifractal sets,
where the information entropy, S, is related to the generalized dimension, Dq, through
the first-order moment of the generalized Rényi entropies, Sq = log

∑n
i=1 pi(ε)

q/(q−1),
as, Dq=1 = limε→0 Sq=1/ log ε, where Sq=1 = −

∑n
i=1 pi(ε) log pi(ε), and pi(ε) is the

probability of a given growth event at a spatial observation scale, ε [56]. In the case of
self-similar structures, such as those characterizing the full DBM transition, the gener-
alized dimension becomes independent of q, making all the fractal dimensions Dq (such
as, box-counting q = 0, information q = 1, or correlation q = 2) equivalent and directly
proportional to the information entropy, leading to S(d, η) = kD(d, η) = k+ kα(d, η),
with k = log ε. In terms of the entropy production, this relation implies that, for a
fixed observation scale, ∂S/∂η = k∂α/∂η → 0, for either η → 0 or η � 1. In other
words, the amount of information needed to characterize the active perimeter of a
compact circular cluster as η → 0, or the active tip of linear structures as η � 1,
does not growth as much as the one needed to characterize the intermediate fractal
perimeter of clusters at η ∼ 1 (see Fig. 1.2).

As previously shown for d = 2, the specific values for the Λ and chi parameters
can be found numerically, via a fit to available data. Also, if the inflection condition
is satisfied at η = 1 (the DLA point), the value of Λ for given d defines the value
of χ = 1/(1 − Λ/d), and again, if data is available the value of Λ can be computed
using Eq. (3.1) evaluated at η = 1. However, without prior knowledge of the DLA
dimensions, here we show one way to find an analytical solution to Λ(d).

The only analytical solution to Φ(d) known so far, is that of the mean-field de-
scription, ΦMF = 1/d, this is ΛMF = 1. In general, Λ(d) is expected to display
a non-trivial behaviour as shown in Fig. 3.3a, where from Eq. (3.1), we applied
Λ[D(d)] = −d log[(D(d) − 1)/(d − 1)], to all the available numerical results for D(d)
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(Table 3 in Appendix A). In particular, we found that one way to construct this gen-
eral Λ(d) is by extending previous real-space renormalization-group (RG) results for
on-lattice DLA [73, 74], to be valid in the continuous space. Under this RG approach,
D(k, d)RG = 1 + α(k, d) = 1 + logµ(k, d)/ log 2, with,

µ(k, d) = 1 + 2

(
d− 1

1

)
φ1 +

d−1∑
k=2

(
d− 1

k

)
φk, (3.3)

where, φk(d) are the growth potentials for a given lattice, and µ(k, d) is inversely
proportional to the maximum growth probability, p(d)max = µ(k, d)−1 = 2−α(k,d).

One of the shortcomings of this model is its heavy dependence on a lattice, that
makes it overestimate the well-known DLA dimension for d = 2, for example, it
predicts DRG = 1.737 for a square lattice. Nonetheless, by construction, it is able to
provide a lower boundary to Λ(d). In the d→∞ limit, φk → 1/2, leading to µ(d)∞ =
2d−1 + d/2, that establishes the lower boundary, Λ− = −d log[logµ(d)∞/ log(2d−1)].
An upper boundary can still be established from the Ball inequality, where D ≥ d−1,
must be always satisfied, leading to, Λ+ = −d log[(d − 2)/(d − 1)]. Thus, a solution
for Λ(d) must be such that the inequality, Λ− ≤ Λ(d) ≤ Λ+, where the equality
will hold for d → ∞, should always be satisfied (see Fig. 3.3b). Under the previous
considerations, the extension to continuous space, i.e., µ(k, d) → µ(d), is done by
observing that when d → ∞, all the information in µ(d) regarding D(d → 2) is
lost, as seen through Λ−. Then, without loss of generality, this information can be
recovered by taking φk = 1/2 (the limit-value of φk as d → ∞) starting from k ≥ 2.
This leads to,

µ(d) = 1− d/2 + 2d−2 + 2(d− 1)φ(d), (3.4)

where φ1 → φ(d), is a continuous function of d. Now, as d → 2, we have that
φ(d) = (2D(d→2)−1 − 1)/2, and µ(d) = 1 + 2φ(d) = 2D(d→2)−1. These forms for φ(d)
and µ(d), suggest that D can be approximated as, D(d)− 1 ≈ (d− 1)/

√
2, as d→ 2.

Therefore, we propose the following ansatz for φ(d),

φ(d) = (2
√

(d−1)/2 − 1)/d, (3.5)

that along with µ(d), provides,

Λ(d) = −d log[logµ(d)/ log 2d−1], (3.6)

and consequently, the solution for Φ(d), see Fig. 3.3b. This solution satisfies the
most rigorous restrictions imposed by the theory, and in particular, it predicts D =
1 + 1/

√
2 ≈ 1.707 for d = 2, in excellent agreement with the highly reported scaling

of DLA. The complete solutions for D(d, η) in d = 2 and d = 3, as well as D(d) are
shown in Figs. 3.3c and 3.3d, respectively.
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3.2 Order parameter and criticality

Another important issue to consider here is that of the criticality of these morpholog-
ical transitions, as well as its characterization using the fractal dimension as an order
parameter, as previously suggested for the DBM [21]. In order to address this point in
a comprehensive approach, let us first define a possible and suitable order parameter
for these systems. This is done by plotting all of the data for D(q) now as function
of Φ itself, i.e., D(Φ), depicted in Figs. 3.1c and 3.2c. Notice that, in this descrip-
tion, the DLA/BA-MF (Fig. 3.1c) and DBM (Fig. 3.2c) transitions, starting from D0,
approach the highly anisotropic regime (D ≈ 1) in an almost identical manner, in
excellent agreement with equations (3.1) and (3.2). Further on, in order to remove
the dependence on D0, we introduce the reduced co-dimension, D∗ ∈ [0, 1], defined by
D∗ = (D− 1)/(D0− 1), as the new “order parameter” of the system. From equations
(3.1) and (3.2), we have,

D∗(Φ) = e−Φ, D∗(1)(Φ) =
1

1 + Φ
, (3.7)

respectively. In this manner, under the new framework based on the co-dimension
D∗, all the numerical results collapse into the universal curves given by equations
(3.7) as can be appreciated in Fig. 3.4. These curves go from D∗ = 1 for D = D0, to
D∗ → 0 for D → 1. Moreover, the co-dimension D∗ is not necessarily describing a real
“order-disorder” transition but, rather, an isotropic-anisotropic one. The subtlety lies
at the initial cluster configuration. This is, even though all transitions collapse to a
linear “ordered” structure, the initial cluster configuration can also be considered as
ordered, such as in the case of the DBM (associated to compact Eden clusters), or
disordered, as in the case of the BA/DLA-MF transitions (a fractal for DLA and a fat-
fractal for BA). Nonetheless, in terms of their isotropy, or preferential growth features,
all transitions start from an isotropic (such as Eden or BA) or isotropic on-average
(such as DLA) clusters, to a highly anisotropic structure as the rotational-symmetry
is broken. These results suggest that characterization based on a rotational or angular
quantity, such as the angular correlation function, would provide more insights into
the nature of these transitions. In this case, some preliminary results are shown in
Appendix C.

Furthermore, given that in any case the solutions for D∗ are smooth functions that
tend to zero in a continuous manner, defining an specific point where D∗ becomes
exactly zero is not possible. This implies that, the previously suggested critical point
for the DBM, i.e., the value for η where D ≈ 1 [21], cannot be treated as “critical”
from the point of view of a formal critical phase-transition theory [30, 31]. In fact,
this won’t be possible for any of the transitions analyzed in this work. Nevertheless,
what it is still possible is to define transitional points, Φt, that are different from
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Table 3.2: Transitional points for which the reduced co-dimension D∗ ≈ 0 for the
λ- and p-models studied in this work. The labels α and β indicate that these data
were obtained through measurements of the fractal dimension using C(r) and Rg(N),
respectively.

Model Data D0 χ Φt(ν = 0.1) qt Φt(ν = 0.05) qt D(q = 1)
p BA-MF (α) 1.94 1.39 2.3 4.5 3.0 5.4 1.72

DLA-MF (α) 1.67 1.69 2.3 2.8 3.0 3.2 1.46
BA-MF (β) 1.95 1.88 9.0 6.0 19.0 9.0 1.73
DLA-MF (β) 1.71 1.34 9.0 21.7 19.0 37.8 1.62

λ BA-MF 1.95 1.43 2.3 4.2 3.0 5.0 1.70
DLA-MF 1.71 1.52 2.3 3.5 3.0 4.2 1.50

the points where the growth-regime changes. For the transitional points, the highly
screening/anisotropy effects are dominant over the morphology of the cluster, thus,
they correspond to points at which D = 1+ε, with ε� 1, is the tolerance or deviation
from D = 1 (for technical details see Table 3.2).

3.3 Universality

The final and most important implication of the previous findings is that the DBM and
BA/DLA-MF transitions, although completely different, can be treated as belonging
to the same universality class. In order to make sense of this, we must recall that, in
two-dimensions, the DBM (for η = 1) and viscous fingering phenomena are said to
belong to the same universality class as that of DLA, based on the fact that they are
all characterized by the same fractal dimension, D = 1.71 [12, 33]. Therefore, by ex-
tending this idea to a whole set of dimensions, the universality of these morphological
transitions must be understood in the sense that they are all described by the same
set of fractal dimensions. Quite remarkably, under the description provided by the
co-dimension D∗(Φ), the DBM and BA/DLA-MF morphological transitions belong to
the same universality class which, in turn, implies that their mathematical description
is independent of their spatial symmetry-breaking dynamics and initial configuration,
therefore, these transitions will be described by the same curves in any embedding
Euclidean dimension (see Fig. 3.4).
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Figure 3.1: Scaling analysis for the p-model: (a) Plots of D(p) for the DLA-MF and
BA-MF transitions obtained from C(r) (left), at small (αI) and large (αII) scales,
and Rg(N) (right), at medium (βI) and large (βII) scales, in correspondence to Fig.
2.5. These results are described by the solid and dotted curves given by equations
(3.1) and (3.2), respectively, for different values of the parameters Λ and χ. (b) By
plotting D as a function of q = p/pi (where pi is calculated for each curve), data
collapses into single master curves, D(q). Note the common point of regime change at
qi = 1, marked with the vertical dashed lines. (c) In the description with the function
D(Φ), all of the morphological transitions approach common transitional points where
clusters have fully collapsed to an ordered structure, independently of the stochastic
model used. (d) The corresponding scaling analysis is performed for the BA- and
DLA-MF transitions obtained by using the λ-model. In this case, equation (3.1) was
used. For further details about the parameter values used, see Table 3.1.
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Figure 3.2: Scaling analysis for the DBM. (a) Plot of the fractal dimensions D as
a function of η for the two-dimensional DBM transition (see Table 4 in Appendix A).
Here, the failure of the mean-field description is evident (dashed red curve). A better
agreement is obtained using equation (3.1), with Φ(D0, η) = Ληχ/D0, where D0 = 2.
By fitting the data with this equation, one obtains Λ ≈ 0.70 and χ ≈ 1.26 with
ηi ≈ 0.66 (dashed black curve), while from the analytical analysis and by considering
ηi = 1, Λ = −2 log(0.71) ≈ 0.685 and χ = 1/(1 − Λ/D0) ≈ 1.52 (solid black curve).
(b) Maintaining ηi = 1 as the transitional point, the analytical solution for D(q) is
equivalent to that for D(η). (c) As well, from the analytical expressions, one can
obtain the curve D(Φ).
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Figure 3.3: DBM and DLA solutions. In this figure, notice the change in notation
Γ = Φ. (a) Analysis of Γ(d, η) in log-log plots for d = 2 (top) and d = 3 (bottom),
using the data coming from Table 4 (Appendix A). Using Eq. (??) with d = 2,
Λ = 0.69 with χ = 1.36 ± 0.02 from linear fit, and χ = 1.52 from theory; for d = 3,
Λ = 0.84 with χ = 0.91 ± 0.02 from linear fit, and χ = 1.39 from theory. In the
cases where the hypothesis of maximum entropy production, χ establishes the upper
boundary for Γ. In the figures, the shaded regions indicate these forbidden regions.
In both cases, ΓMF = η/d is shown. (b) The analytical solutions to Λ(d) (top) and
Γ0(d) = Λ(d)/d (bottom), as given by Eq. (3.6), are in great agreement with the data
(Table 3 in Appendix A) and theory. (c) Final theoretical and numerical solutions
to D(d, η) for d = 2 and d = 3. (d) The theoretical solution for D(d), shown as
∆D = D − (d− 1). For all the numerical values see Tables 3 and 4 in Appendix A.
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Figure 3.4: (a) Snapshots of typical clusters present in fractal to non-fractal mor-
phological transitions obtained from the λ-model with the branching parameter ε as
the control parameter, and the p-model with the mixing parameter p as the con-
trol parameter. (b) By plotting D∗(Φ) and D∗(Φ)(1), the data for the morphological
transitions DLA-MF, BA-MF, and DBM collapse to universal curves described by
equations (3.1) and (3.2). Under this prescription, these universal fractal to non-
fractal morphological transitions are independent of the initial fractal dimension, D0,
the symmetry-breaking process that drives the transition, even crossover effects, and,
quite remarkably, the Euclidean dimension, d, of its embedding space.



Chapter 4

Outcome

In summary, we present a novel framework for the scaling of morphological transitions
in stochastic growth processes. By means of a general ansatz for an effective control
parameter, Φ, we were able to construct a model for the fractal dimension D that
describes the fractality of very different systems. In particular, this model is able to
describe the scaling of the newly introduced BA/DLA-MF transitions, as well as it
provides an excellent description for the fractal dimensions of the well-known DBM.
In this case, an analytical solution was constructed that is in excellent agreement with
numerical results reported over the years.

In addition, it was strictly shown that D can be used as a rotational-symmetry
“order” parameter under the reduced co-dimension transformation D∗. On the other
hand, we have shown that the previously suggested “critical” point for the DBM can-
not be properly defined as such, but instead, as a transitional point in the fractality of
a continuous morphological transition. These findings indicate that a quantification
based on this rotational-symmetry would provide an important characterization of
these morphological transitions.

Finally, we have shown that under the reduced co-dimension, the BA/DLA-MF
and DBM transitions exhibit a well-defined universal scaling, D∗(Φ), that is remark-
ably independent of their initial configuration, the specific spatial symmetry-breaking
mechanism that drives the transition, and the dimensionality of their embedding Eu-
clidean space. The study and characterization of other morphological transitions avail-
able in the literature as well as new ones, such as the proposed controlled screened
model, using the dimensionality function D(Φ) would be necessary to validate its gen-
erality.
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In general, we consider that the results and models presented in this work represent
a significant unifying step towards a complete scaling theory of fractal growth and
far-from-equilibrium pattern formation. Additionally, the possibility of applying this
model to discuss current issues in fractal growth-phenomena and other related research
areas, ranging from biology [1, 3], intelligent materials engineering [34, 35] to medicine
[36, 37, 38], seems to be more feasible and direct.



Appendix A. Fractal dimensions
of DLA and DBM
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Table 1: Numerical results for DLA in two dimensions. Results from standard
numerical scaling analysis (first section) and multifractal analysis (second section).
These include: density-density correlation (DDC), radius of gyration (RGy), mass-
length (ML), radial density (RD), angular-gap distribution (AGP) and box-counting
(BC) methods. Only off-lattice results are considered when available, otherwise lat-
tice results are indicated (L). Specifications such as the number of clusters (C), and
number of particles per cluster (N) used are shown. Any data not explicitly reported
is indicated as NA (not available). Error in measurements shown when available.

(Year) Author(s) D Method Specifications
(1981) Witten & Sander [43, 44] 1.657± 0.004 DDC C=6, N≈ 3000 (L)

1.673± 0.001 DDC C=3, N≈ 3000 (L)
1.70± 0.02 RGy C=6, N≈ 3000 (L)

(1983) Meakin [64, 65] 1.68± 0.03 DDC C=4, N≈ 8500
1.71± 0.07 RGy

(1989) Tolman & Meakin [66] 1.715± 0.004 RGy C=377, N∼ 104-106

(1989) Hinrichsen, et al. [45] 1.69± 0.01 ML C=310, N∼ 103-105

1.710± 0.005 RGy
(1991) Ossadnik [46] 1.712± 0.003 RD C=102, N∼ 105-106

(2001) Huang [15] 1.68 DDC C=5, N= 25000
1.71 RGy

(2002) Mandelbrot, et al. [47] 1.67, 1.75 AGD C=60, N=108

(2006) Alves & Ferreira [17] 1.723± 0.007 RGy C=103, N=7× 106

(2012) Menshutin [48] 1.71 RD C=103, N=5× 107

(2013) Rodriguez & Sosa [67] 1.711± 0.009 ML C=4, N∼ 106-109

(2016) Nicolás, et al [27] 1.710± 0.005 DDC C=128, N=105

1.708± 0.013 RGy
1.683± 0.008 ML

(1984) Meakin & Wasserman [49] 1.608± 0.017 BC (q = 0) C=10, N≈ 104 (L)
1.646± 0.009 BC (q = 2)

(1989) Hinrichsen, et al. [45] 1.67± 0.03 BC (q = 0) C=310, N∼ 103-105

(1989) Li, et al. [50] 1.69± 0.03 BC (Any q) C=27, N=5× 104

(1990) Argoul, et al. [51] 1.60± 0.02 Wavelet (Any q) C=NA, N∼ 104 (L)
(1990) Vicsek, et al. [52] 1.71 Sandbox (q = 2) C=5, N=106

(1995) Mandelbrot, et al. [53] 1.65± 0.01 BC (q = 0)/ML C=20, N=106

(2012) Hanan & Hefferman [54] 1.697 Sandbox (Any q) C=102, N=106

(2013) Rodriguez & Sosa [67] 1.7018 BC (q = 2) C=4, N∼ 106-109

1.70 BC (Any q)
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Appendix B. Models and
methods

Aggregation dynamics

In all simulations, each particle has a diameter equal to one. This is the basic unit of
distance of the system. For aggregates based on BA or MF (Figs. 1a and 1c), we follow
a standard procedure in which particles are launched at random from a circumference
of radius rL = 2rmax + δ, with equal probability in position and direction of motion.
Here, rmax is the distance of the farthest particle in the cluster with respect to the seed
particle placed at the origin. In our simulations we used δ = 1000 particle diameters to
avoid undesired screening effects. For the MF model, particles always aggregate to the
closest particle in the cluster with respect to their incoming path. This is determined
by the projected position of the aggregated particles along the direction of motion
of the incoming particle (see Fig. 1c). In the case of aggregates based on DLA (Fig.
1b), particles were launched from a circumference of radius rL = rmax +λ+ δ, for the
λ-model, and rL = rmax + δ, for the p-model, with δ = 100 in both cases. The mean
free path of the particles is set to one particle diameter. We also used a standard
scheme that modifies the mean free path of the particles as they wander at a distance
larger than rL or in-between branches, as well as the common practice of setting a
killing radius at rK = 2rL in order to speed up the aggregation process.

In order to mix different aggregation dynamics, a Monte Carlo scheme of aggrega-
tion is implemented using the BA, DLA and MF models. The combination between
pairs of models results in the DLA-MF and BA-MF transitions, controlled by the
mixing parameter p ∈ [0, 1], associated with the probability or fraction of particles
aggregated under MF dynamics, p = NMF/N , where N is total number of particles
in the cluster. Therefore, as p varies from p = 0 (pure stochastic dynamics given
by the BA or DLA models) to p = 1 (purely energetic dynamics given by the MF
model), it generates the two transitions introduced in the work. The evaluation of the
aggregation scheme to be used is only updated once a particle has been successfully
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aggregated to the cluster under such dynamics.

Fractal and scaling analysis

In all of the measurements, we used 128 clusters containing 1.5 × 105 particles. For-
mally, the fractal dimension is measured from the two-point density correlation func-
tion, C(r) = 〈〈ρ(r0)ρ(r0 + r)〉〉|r|=r, where the double bracket indicates an average
over all possible origins r0 and all possible orientations. For this work, we made use
of 1000 possible origins. Here, it is assumed that C(r) ≈ r−α, where the fractal di-
mension is given by Dα = d − α, where d is the dimension of the embedding space.
We also used the radius of gyration given by R2

g =
∑N

i=1(ri − rCM )2, where N is the
number of particles, ri is the position of the ith-particle in the cluster, and, rCM is
the position of the center of mass. In this scheme, it is assumed that Rg(N) ≈ Nβ,
where the fractal dimension is given by Dβ = 1/β. Therefore, the fractal dimensions,
Dα and Dβ, are respectively obtained from linear-fits to the corresponding functions,
C(r) and Rg(N), in log-log plots for different scales. In practice, it is assumed that
α and β are constant as long as the size or number of particles in the cluster is large
enough. However, because the clusters do not develop a constant scaling, alternative
methods were used in order to capture their main local fractal features.

For the λ-model, the derivative of Rg in the logarithmic scale was computed by
means of standard two and three point numerical differentiation methods: f ′(x) =
[f(x + h) − f(x)]/h, at the end of the differentiation intervals, and f ′(x) = [f(x +
h) − f(x − h)]/2h, in between. Here f(x) = logRg(N) and Rg(N) are computed as
a discrete quantity therefore, h is set as the distance between the points, x = xj and
x + h = xj+1. In all cases, Rg is computed as an average over a large ensemble of
aggregates. Specifically, the results for the multiscaling aggregates were obtained over
64 and 15 aggregates containing 1.5 × 105 and 3 × 105 particles for those based on
DLA and BA, respectively. In this case, Rg was calculated every 10 particles. The
results for tunable aggregates based on DLA and BA were obtained over 128 and
48 aggregates, respectively, containing 105 particles, and Rg was computed every 10
particles.

In the case of the p-model, linear-fits at different scales were performed and aver-
aged over a sample of 10 measurements, distributed over a given interval in order to
improve the precision. For both transitions, DLA-MF and BA-MF, Dα(p) is measured
at short length-scales (this is αI) over the interval ri ∈ [1, 2] with fitting-length equal
to 10, and rf ∈ [11, 12] (in particle diameters units). At long length-scales (αII), over
ri ∈ [10, 11] with fitting-length equal to 40, and rf ∈ [50, 51]. On the other hand,
for Dβ(p), the measurements at medium scales (βI) were performed over the interval
ri ∈ [102, 103] with fitting-length equal to 104 and rf ∈ [1.01 × 104, 1.1 × 104] (in
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particle number), while, at large scales (βII), over the interval ri ∈ [103, 104] with
fitting-length equal to 0.9× 105 and rf ∈ [9.1× 104, 105].
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Appendix C. Additional
preliminary results

Mean field effect on angular correlation

This work in progress is in collaboration with Juan Manuel Solano-Altamirano, at
Facultad de Ciencias Qúımicas, BUAP. A manuscript entitled “Mean field effect on
angular correlation and fractal growth in small clusters” by J. R. Nicolás-Carlock, J.
M. Solano-Altamirano, and J. L. Carrillo-Estrada, is in preparation.

To measure the angular correlation, cR(θ), we used RdRdθ ≈ Nπ/4, and the
average is normalized to the number of boxes used to count particles within the ring
R− δR/2 < r < R+ δR/2. The size of the counting box is evaluated as follows:

Nπ

4
=
fR2 · 2π

K
⇒ K =

8fR2

N
. (1)

Here, N is some number of particles (determined heuristically), K determines dθ,
dθ = 2π/K, and f sets dR, dR = fR. For the calculations presented here, we used
N = 3 and f = 0.1 for computing cR(θ), R = 7, 9, 11, 13, 15; N = 10 and f = 0.1 for
computing cR(θ), R = 20, 40, 60, 80 and N = 25; and f = 0.05 for computing cR(θ),
R = 100, 125, 150, 175, 200.

In small clusters, i.e. clusters whose radii are <∼ 40d (here d is the a particle
diameter), the shape of the cR(θ) vs θ curves are more similar (as p increases) than
the shapes of the same curves at larger radius (>∼ 40d), see Fig. 1 for BA/MF and
Fig. 3 for DLA/MF.

This conclusion can also be deducted from the exponents of the scaling law (see
Fig. 2 for BA/MF and Fig. 4 for DLA/MF).
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Figure 1: Log-log plot of cR(θ) vs θ for different values of p, where p is the degree of
mixing BA/MF. As the MF character of the cluster increases, the angular correlation
decays progressively earlier, i.e. at lower p values.
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Figure 2: Exponent p-evolution measured at different values of R. αθ vs p, and αθ
vs pred. Here p is the degree of mixing BA/MF, and pred ≡ p/pcrit, where pcrit is the
interpolated value of p such that αθ(pcrit) = −2. For R > 20 the clusters reflect the
MF contribution to their growth. The behaviour seems to be quasi-universal relative
to pred.

Controlled screening model of particle aggregation

This is a work in progress. A manuscript entitled “Fractal growth by controlled screen-
ing in particle-cluster aggregation” by J. R. Nicolás-Carlock, V. Dossetti, and J. L.
Carrillo-Estrada, is in preparation.
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Figure 3: Log-log plot of cR(θ) vs θ for different values of p, where p is the degree of
mixing DLA/MF. As the MF character of the cluster increases, the angular correlation
decays progressively earlier, i.e. at lower p values.
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Figure 4: Exponent p-evolution measured at different values of R. (a)αθ vs p, and
(b)αθ vs pred. Here p is the degree of mixing DLA/MF, and pred ≡ p/pcrit, where pcrit

is the interpolated value of p such that αθ(pcrit) = −2. For R > 20 the clusters reflect
the MF contribution to their growth. The behaviour seems to be quasi-universal
relative to pred.

This particle-cluster aggregation model is based on the concept of penetration
length, l, the effective distance that characterizes the region to which particles are
able to aggregate within a growing cluster. For example, aggregated particles in
BA form a compact cluster that does not allow a deep penetration into its inner
structure, therefore its penetration length is almost zero. In a DLA cluster, aggregated
particles form big branches, allowing a deeper penetration into the structure. In the
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Figure 5: The critical p as a function of R. Here p is the degree of mixing BA/MF (or
DLA/MF), R is the radius whereat the angular correlation is measured, and p critical
(denoted as pcrit) is the value of p whose scaling-law exponent is αθ(pcrit) = −2.

MF scenario, the penetration length goes again to zero because the particles aggregate
to the outermost parts of the cluster, this is, the tips. Within mean-field theories [23],
the penetration length is given as,

l ∝ rδ, δ =
d−D
dw − 1

, (2)

where r is the distance from the center of the cluster. However, this expression is
expected to provide an approximation to the real functional relation among variables.

This length also characterizes the active region in the growing front that is in
charge on defining the fractality of the cluster as stated in the Turkevich-Scher relation,
D = 1+α, therefore the importance of its systematic study. To this end, we introduce
a new model of particle-cluster aggregation in which particles following BA or DLA
dynamics are allowed to aggregate only within a portion of the growing front as defined
ξ, and controlled by the parameter ζ ∈ [0, 1], as giving by ξ ∝ rζ , where r is the size
of the cluster, see Fig. 6.

The main objectives of this study are to explore the origins of fractality in this new
model of particle aggregation, to test the limits of δ and provide an analytical solution
using our generalized dimensionality function D(Φ), and test again the generality of
the Turkevich-Scher conjecture.
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ξ~rζ

Forbidden aggregation region

a

r

b BA/DLA to linear
morphological transition (origin restricted)

  ζ=0.8           ζ=0.7          ζ=0.6          ζ=0.5           ζ=0.4           ζ=0.3         ζ=0.2 

BA/DLA to linear
morphological transition (center of mass restricted)

  ζ=0.8           ζ=0.7          ζ=0.6          ζ=0.5           ζ=0.4           ζ=0.3         ζ=0.2 

Figure 6: (a) The screened model of aggregation. Particles can follow either DLA
or BA dynamics before aggregation takes place outside the forbidden region. (b)
There are to variants of this model for each aggregation dynamics. First, aggregation
restricted to the origin or seed particle, and aggregation restricted to the center of
mass. Different morphologies and symmetries appear as function of this rules. In all
cases, D = D0, for the initial states with unrestricted BA or DLA dynamics for ζ = 1,
and D → 1 as ζ → 0. For each value of ζ shown there are 120 clusters containing up
to 100 thousand particles.
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Fractality à la carte: a general 
particle aggregation model
J. R. Nicolás-Carlockw, J. L. Carrillo-Estradaw & V. Dossettiw,x

In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and 

energetic distributions. The fractality of these systems determines many of their physical, chemical and/

or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality 

is highly relevant in many areas of science and technology. In studying clusters grown by aggregation 

phenomena, simple models have contributed to unveil some of the basic elements that give origin to 
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hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation 
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fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-

looking aggregates with any prescribed fractal dimension.

From the formation of mineral veins, complex biopolymers to clusters of galaxies, aggregation phenomena are 
out-of-equilibrium processes of fractal pattern formation ubiquitous in nature1–3. Since the appearance of the 
di�usion-limited aggregation4 (DLA) and ballistic aggregation5 (BA) models, a plethora of studies have been 
developed trying to understand the ultimate aspects of the aggregation dynamics that give rise to self-a�ne or 
fractal clusters, the relationship of this fractality with their physical and chemical properties, and the most e�ec-
tive methods and techniques to controll fractal growth6–8.

Furthermore, these simple paradigmatic models, proposed as way to understand aggregation under 
short-range interactions, have contributed to reveal that the main sources of fractality in particle-cluster aggrega-
tion are related to the general entropic and energetic characteristics of the system. �at is, when long-range inter-
actions are negligible, the entropic information of the growing medium (such as its temperature and viscosity), 
encoded in the mean squared displacement of aggregating particles, is the main element of the dynamics that 
determines the fractality and morphology of the clusters. For example, random trajectories of the wandering 
particles in DLA generate branching clusters with fractal dimension D <  d, where d is the dimension of the 
embedding space, whereas ballistic (straight line) trajectories in BA generate compact clusters with D =  d9–14. On 
the other hand, when attractive or repulsive interactions can no longer be disregarded, aggregation dynamics can 
become quite complex. Nonetheless, experimental reults15–19 and computational models20–28 have shown that for 
short-range repulsive interactions, clusters tend to be compact with  D ≈  d. Conversely, long-range attractive 
interactions generate highly rami�ed clusters with a non-trivial fractal behavior characterized by �D d, as the 
range of the interactions becomes larger.

In the last case, fractality is enhanced by the branching growth process that emerges from screening e�ects 
generated by the aggregated particles29,30, a fact that has led to consider that the main contribution to the fractality 
and morphology of the clusters is of an energetic character only, making the entropic one of no special signi�-
cance but just as an intrinsic stochastic element of the dynamics20–24. However, while screening and anisotropic 
e�ects might play an important role when interactions are present31–37, in this Article we show that the entropic 
contribution cannot be trivially considered as this intrinsic stochastic element, but as an important aspect of the 
dynamics that contributes greatly to the fractality of the clusters, making it also a remarkable source of shape and 
texture in fractal pattern formation. To this end, trough the incorporation of an e�ective interaction or aggrega-
tion range20,37, λ, in the dynamics of the standard two-dimensional o�-lattice particle-cluster DLA and BA mod-
els, we introduce a simple but non-trivial stochastic scheme that allows one to separate and characterize the subtle 
contributions of entropic and energetic character of the dynamics to the fractality and morphology of the clusters. 
�is scheme also allows one to generate fractal clusters with rich morphological features, and most important, to 
harness absolute control over their fractal dimension.
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The fractal dimensions of Laplacian growth: an information entropy approach to
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Laplacian growth is an ubiquitous out-of-equilibrium process of pattern formation able to generate
a continuous set of fractal to non-fractal structures, including the paradigmatic diffusion-limited
aggregation model within a particular scenario. However, a data-consistent analytical description
of their fractality, valid beyond mean-field approximations, had been missing. Here we show that,
an analytical solution to the fractality can be found by regarding the diffusion-limited growth as
the maximum information-entropy production point in a dynamical model for the scaling of clusters
undergoing a continuous morphological transition. Despite the complexity of the system, the solution
found is an exclusive function of the Euclidean dimension of the embedding space and a characteristic
growth-probability parameter. In particular, it provides a consistent characterization of data in two
and three dimensions, and in general, is in excellent agreement with theoretical and numerical results
for higher dimensions reported over the years.

The enormous diversity of fractal morphologies in na-
ture is just matched by the great amount of out-of-
equilibrium processes that generate them, making the
issue of establishing an unified and comprehensive the-
ory of fractal growth a great challenge [1–4]. However, it
often happens that a simple model comes to unify diverse
phenomena that once seemed to be completely unrelated.
Such is the case of the Laplacian growth theory and its
emblematic dielectric breakdown model (DBM), which
constitute a paradigm of out-of-equilibrium growth that,
due to its diversity of fractal morphologies, has received
significant attention in diverse scientific and technological
fields, from the oil industry, through bacterial growth, to
even cosmology [5–7], with relevant applications in cur-
rent neuroscience and cancer research [8–10]. Therefore,
a precise characterization of this fundamental model in
terms of its fractality is of the utmost importance.

In a generic growth process, the volume and surface
of a given structure embedded in an Euclidean space of
dimension d, can be described in terms of simple power-
laws, V ∝ rD and dV/dr ∝ rα respectively, where r is
a characteristic radius, and D is the scaling or fractal
dimension, with co-dimension α = D − 1. In the DBM,
the increment in volume is related to the growth prob-
ability distribution, σ ∝ |∇φ|η, where φ is a scalar field
associated to the energy landscape of the growing sur-
face, and η ≥ 0 is the growth probability parameter, a
real number associated to the net effect of all non-linear
interactions [11–20]. The most remarkable scenario of
this model appears for η = 1, that corresponds to the
well-known diffusion-limited aggregation (DLA) model,
a stochastic particle aggregation process that generates
dendritic structures for whom, D is only dependent on d
(see Fig. 1a). This issue has been the subject of extensive
research, not only for the well-known two-dimensional
case, where D = 1.71 (from numerical [21–25] and theo-
retical [26–30] results), but for higher dimensions as well
(although in this case, simulations [31–34] and theory

[35–41] are not in the best agreement).
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FIG. 1. The Laplacian framework. (a) Characteristic
morphological and scaling features of the DLA fractal (with
its cluster in blue and growing front in red), for d = 2 (left)
and d → ∞ (right) according to the Ball inequality, D ≥
d − 1 [35]. (b) Characteristic features of the DBM for d = 2
and as function of η (top), with a generic description of the
corresponding growth dynamics (as related to σ) at a small
portion of the growing front (bottom).

In general, in terms of the fractal dimension D(d, η),
this model is characterized by a morphological transition
from isotropic compact structures with D0 = d for η = 0
(Eden clusters), through intricate dendritic fractals with
1 < D < d (including DLA), to highly anisotropic lin-
ear structures as η � 1 (see Fig. 1b). Although with
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important limitations, among the best analytical results
for D(d, η) there is the one provided by the mean-field
approach [42–44],

DMF (d, η) =
d2 + η(dw − 1)

d+ η(dw − 1)
, (1)

where dw = 2 is the fractal dimension of the random
walkers’ trajectories in any d ≥ 2. This equations pro-
vides a good qualitative description of the η-transition,
but fails to provide precise values for D (for example,
DMF (η = 1) = 5/3 < 1.71 in d = 2). Overall, despite all
the previous results and observations, the derivation of a
consistent analytical expression for D(d, η), valid beyond
mean-field approximations, has proven to be a non-trivial
task and has been missing [4, 7] (see Fig. 2).
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FIG. 2. DBM and DLA dimensions. (a) Numerical
results (Table I) for D(d, η) of the DBM for d = 2 and
3 in a log-log plot. (b) Numerical (red) and theoretical
(blue) results (Table II) for D(d, η = 1), expressed through
∆D = D − (d− 1), of the DLA model.

The mathematical model. Despite the complexity
of the DBM morphological transition, a simple model can
be established to describe its fractality by considering the
fundamental elements of its growth dynamics, which are
mainly two: stochastic and energetic. Qualitatively, as
function of the growth parameter η, the growth dynamics

produce homogeneous stochastic growth for η = 0, frac-
tal or unstable growth for η ∼ 1, and highly anisotropic
growth as η →∞ (see Fig. 1b). In terms of the fractality,
this implies that as the energetic element is introduced
in the stochastic growth dynamics, anisotropic or prefer-
ential growth is enhanced causing the fractal dimension
of the clusters to decrease from its initial value D0 = d,
towards D → 1 as η → ∞. In this process, considering
that all the information regarding the effects of stochas-
tic/energetic growth-dynamics is encoded in an effective
control parameter Γ, we define the dimension function
D(Γ), where D(Γ) = D0 for Γ = 0 and D(Γ) → 1
as Γ → ∞, or in terms of the co-dimension, we have
α(Γ) = D0 − 1 for Γ = 0 and α(Γ) → 0 as Γ → ∞,
correspondingly. Taking into account that the behaviour
of D is smooth and monotonically decreasing as func-
tion of the control parameter, we may consider that its
most general solution satisfies dD/dΓ = dα/dΓ < 0,
and therefore, it can be obtained from dα/dΓ = −f(α).
By expanding f(α) as a Taylor series up to the first-
order term, dα/dΓ ≈ −[f0 + f1α + O(α2)], and by
integrating between a given and finite α and Γ, i.e.,∫ α
α0
dα′/(f0 + f1α

′) =
∫ Γ

0
dΓ′, we obtain,

D(Γ) = 1 + (D0 − 1)e−Γ, (2)

where f0 = 0 from the condition that α → 0 as Γ →∞,
and f1 has been absorbed in the effective control param-
eter Γ. From construction, Eq. (2) is the most general
form for D, and the functional form of Γ must still be
found. However, before proceeding to find it, let us now
show why this equation is suitable to characterize this
system by considering the DBM mean-field equation first.

The mean-field result given in Eq. (1) belongs to a
special case of the family of equations given by Eq. (2).
Starting with its first-order approximation in Γ, it follows
that,

D(1)(Γ) = 1 +
D0 − 1

1 + Γ
=
D0 + Γ

1 + Γ
. (3)

Here, from direct comparison to Eq. (1), one observes
that these expressions are equivalent, with Γ being noth-
ing but ΓMF = η(dw − 1)/d, and D0 = d. As previously
commented, this equation does not provide the correct
solution to D due to its mean-field nature, nonetheless,
this example not only makes the relation between the
effective parameter Γ and the actual parameter of the
transition η more evident, but gives a clear picture of
the generality of Eq. (2) as a fractality function. In or-
der to find a suitable Γ(d, η), specific conditions over D
must be considered according to the DBM phenomenol-
ogy, and particularly, a good insight can be found within
the context of information theory as applied to out-of-
equilibrium growth.

Special attention has been given to the entropy pro-
duction rate of growing clusters as function of their ac-
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tive front [45–47]. This is supported by the fundamen-
tal Turkevich-Scher conjecture, D = 1 + α∗, that relates
the fractal dimension of the cluster to the dimension of
the most active region of its growing front, α∗ = α,
indicating that the scaling of the active perimeter, i.e,
the co-dimension, contains the information needed to
uniquely define the fractality of the cluster itself [7, 36].
A measure of this information, and the connection to en-
tropy production, is found under the formalism of mul-
tifractal sets, where the information entropy, S, is re-
lated to the generalized dimension, Dq, through the first-
order moment of the generalized Rényi entropies, Sq =
log
∑n
i=1 pi(ε)

q/(q − 1), as, Dq=1 = limε→0 Sq=1/ log ε,
where Sq=1 = −

∑n
i=1 pi(ε) log pi(ε), and pi(ε) is the

probability of a given growth event at a spatial obser-
vation scale, ε [26]. In the case of self-similar struc-
tures, such as those characterizing the full DBM tran-
sition, the generalized dimension becomes independent
of q, making all the fractal dimensions Dq (such as, box-
counting q = 0, information q = 1, or correlation q = 2)
equivalent and directly proportional to the information
entropy, leading to S(d, η) = kD(d, η) = k + kα(d, η),
with k = log ε. In terms of the entropy production,
this relation implies that, for a fixed observation scale,
∂S/∂η = k∂α/∂η → 0, for either η → 0 or η � 1. In
other words, the amount of information needed to char-
acterize the active perimeter of a compact circular cluster
as η → 0, or the active tip of linear structures as η � 1,
does not growth as much as the one needed to character-
ize the intermediate fractal perimeter of clusters at η ∼ 1
(see Fig. 1b).

Under the previous observations, let us consider that
this regime change in growth dynamics manifests it-
self in the fractality of the system as that point where
∂2S/∂η2 = k∂2α/∂η2 = 0, this is, ∂S/∂η|η=ηi , becomes
a global maximum. From Eq. (2), the inflection point ηi

satisfies, ∂2α/∂η2|η=ηi = 0, that translates into the in-
flection condition, [(∂Γ/∂η)2−∂2Γ/∂η2]|η=ηi = 0. Then,
to propose a suitable form for Γ, notice that in the
mean-field case, the relation between parameters is lin-
ear, ΓMF = η/d (with d fixed), making it impossible to
define ηi > 0. Therefore, we propose as a general ansatz
for Γ,

Γ(d, η) = Γ0η
χ, (4)

with Γ0 = Λ/d, where Λ and χ are two positive real
numbers that are associated with the strength of the ef-
fective growth forces. By applying the inflection condi-
tion to the new Γ(d, η), we have that the regime-change
of growth dynamics it satisfies Γ0η

χ
i = (χ − 1)/χ, with

χ ≥ 1. Then, in order to determine D, the parameters
Λ and χ must be determined either numerically or the-
oretically. In the latter case, Eq. (2), along with Eq.
(4), can be used as a fitting function to an available data
set. In the former case, we can make use of a particu-
lar observation found in the angular correlation analy-

sis of DLA clusters which suggests that the DLA fractal
(η = 1) can be associated to a critical dynamical state
that defines the point of maximum entropy production
[46–48]. In the case of our model, this is applied by set-
ting ηi = 1, leading to χ = 1/(1 − Γ0), and in this way,
Γ(d, η) = Γ0η

1/(1−Γ0), where the solution to D(d, η) is
finally found once Λ = Λ(d) is established. Notably, Γ
is the specific term in D(d, η) that keeps all the informa-
tion regarding the fractality of the system. For example,
for a given d, it is associated to the η-transition, and for
η = 1, it is associated to the fractal dimensions of DLA
across different Euclidean spaces. In fact, from Eq. (2),
α(d, η) = (d − 1) exp[−Γ(d, η)], is the function that pro-
vides all the information needed to define D = 1 + α, as
stated by the Turkevich-Scher conjecture.

Analytical solution for Γ0(d). Independently of the
numerical or theoretical method to find Λ and χ, let us
first notice that for η = 1, the dimensions D(d, η) not
only are associated to the fractal dimensions of DLA as
an exclusive function of d, but are only dependent on the
solution of Λ = Λ(d). Once the solution to Λ is found
for a fixed d, the straightforward procedure to obtain χ
is by a linear fit to an available data-set plotted through,
Γ[D(η)] = −d log[(D(η) − 1)/(d − 1)]|, that comes from
Eq. (2). An alternative procedure is by directly using the
hypothesis of maximum entropy production, for which
χ = 1/(1− Γ0), with Γ0 = Λ/d.

If the fractal dimensions of DLA are known for spe-
cific Euclidean spaces, one practical way to find Λ is
by using Eq. (2) with η = 1 for which, Λ[D(d)] =
−d log[(D(d)η=1 − 1)/(d− 1)]. For example, in the two-
dimensional DLA model, we have thatDη=1 = 1.71, lead-
ing to Λd=2 = −2 log(0.71) ≈ 0.69. Then, χ can be found
by a linear fit to data plotted using Γ[D(η)]d=2, for which
χ = 1.36± 0.02; or by using the hypothesis of maximum
entropy production, for which χ = 1/(1−Λd=2/2) ≈ 1.52.
This procedure can be applied to find Λ and χ for higher
dimensions as long as there is available and reliable data
to compute them. In Fig. 3a, we present the results of
this analysis as applied for d = 2 and d = 3 (see also
Table I and II). However, without prior knowledge of the
DLA dimensions, here we show one way to find an ana-
lytical solution to Λ(d).

The only analytical solution to Γ0(d) known so far, is
that of the mean-field description, ΓMF = 1/d, this is
ΛMF = 1. In general, Λ(d) is expected to display a non-
trivial behaviour as shown in Fig. 3b, where from Eq.
(2), we applied Λ[D(d)] = −d log[(D(d) − 1)/(d − 1)],
to all the available numerical results for D(d) of Ta-
ble II. In particular, we found that one way to con-
struct this general Λ(d) is by extending previous real-
space renormalization-group (RG) results for on-lattice
DLA [40, 41], to be valid in the continuous space. Un-
der this RG approach, D(k, d)RG = 1 + α(k, d) = 1 +
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logµ(k, d)/ log 2, with,

µ(k, d) = 1 + 2

(
d− 1

1

)
φ1 +

d−1∑
k=2

(
d− 1

k

)
φk, (5)

where, φk(d) are the growth potentials for a given lattice,
and µ(k, d) is inversely proportional to the maximum
growth probability, p(d)max = µ(k, d)−1 = 2−α(k,d).

One of the shortcomings of this model is its heavy de-
pendence on a lattice, that makes it overestimate the
well-known DLA dimension for d = 2, for example, it
predicts DRG = 1.737 for a square lattice. Nonethe-
less, by construction, it is able to provide a lower bound-
ary to Λ(d). In the d → ∞ limit, φk → 1/2, lead-
ing to µ(d)∞ = 2d−1 + d/2, that establishes the lower
boundary, Λ− = −d log[logµ(d)∞/ log(2d−1)]. An upper
boundary can still be established from the Ball inequal-
ity, where D ≥ d − 1, must be always satisfied, leading
to, Λ+ = −d log[(d − 2)/(d − 1)]. Thus, a solution for
Λ(d) must be such that the inequality, Λ− ≤ Λ(d) ≤ Λ+,
where the equality will hold for d→∞, should always be
satisfied (see Fig. 3b). Under the previous considerations,
the extension to continuous space, i.e., µ(k, d)→ µ(d), is
done by observing that when d→∞, all the information
in µ(d) regarding D(d → 2) is lost, as seen through Λ−.
Then, without loss of generality, this information can be
recovered by taking φk = 1/2 (the limit-value of φk as
d→∞) starting from k ≥ 2. This leads to,

µ(d) = 1− d/2 + 2d−2 + 2(d− 1)φ(d), (6)

where φ1 → φ(d), is a continuous function of d. Now,
as d → 2, we have that φ(d) = (2D(d→2)−1 − 1)/2, and
µ(d) = 1 + 2φ(d) = 2D(d→2)−1. These forms for φ(d) and
µ(d), suggest that D can be approximated as, D(d)−1 ≈
(d−1)/

√
2, as d→ 2. Therefore, we propose the following

ansatz for φ(d),

φ(d) = (2
√

(d−1)/2 − 1)/d, (7)

that along with µ(d), provides,

Λ(d) = −d log[logµ(d)/ log 2d−1], (8)

and consequently, the solution for Γ0(d), see Fig. 3b. This
solution satisfies the most rigorous restrictions imposed
by the theory, and in particular, it predicts D = 1 +
1/
√

2 ≈ 1.707 for d = 2, in excellent agreement with the
highly reported scaling of DLA. The complete solutions
for D(d, η) in d = 2 and d = 3, as well as D(d) are shown
in Figs. 3c and 3d, respectively.

Final remarks. Once an analytical solution to
D(d, η) has been found, an important issue to consider
is that of the criticality of the DBM transition and its
characterization using D as an order parameter, which
for d = 2, it has been suggested that the full collapse
to linear clusters occurs at critical value η ≈ 4, al-
though this criticality still needs of further clarification
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FIG. 3. DBM and DLA solutions. (a) Analysis of Γ(d, η)
in log-log plots for d = 2 (top) and d = 3 (bottom), using
the data coming from Fig. 2a. Using Eq. (4) with d = 2,
Λ = 0.69 with χ = 1.36 ± 0.02 from linear fit, and χ = 1.52
from theory; for d = 3, Λ = 0.84 with χ = 0.91 ± 0.02 from
linear fit, and χ = 1.39 from theory. In the cases where
the hypothesis of maximum entropy production, χ establishes
the upper boundary for Γ. In the figures, the shaded regions
indicate these forbidden regions. In both cases, ΓMF = η/d is
shown. (b) The analytical solutions to Λ(d) (top) and Γ0(d) =
Λ(d)/d (bottom), as given by Eq. (8), are in great agreement
with the data (coming from Fig. 2b) and theory. (c) Final
theoretical and numerical solutions to D(d, η) for d = 2 and
d = 3. (d) The theoretical solution for D(d), shown as ∆D =
D − (d− 1). For the numerical values see Tables I and II.

[16, 49, 50]. To formally address this point, let us de-
fine the reduced co-dimension, α̂ = (D − 1)/(D0 − 1),
as the order parameter of the system, where α̂ → 1 as
D → D0, and α̂ → 0 as D → 1. From Eq. (2), given
that α̂ = exp[−Γ(d, η)] is a smooth function that tends
to zero in a continuous manner, defining an specific point
where it becomes exactly zero is not possible. This im-
plies that, the previously suggested critical point for the
DBM, i.e., the value for η where D ≈ 1 [16], cannot be
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treated as “critical” from the point of view of a formal
critical phase-transition theory [46, 47]. Nevertheless, it
is still possible to define a transitional point, ηt, i.e., a
point where the highly screening/anisotropy effects are
dominant over the morphology of the cluster. Mathe-
matically, it can be defined from D = 1+ ε, where ε� 1,
is the tolerance or deviation from D = 1, then from
Eq. (2), (Λ/d)ηχt = − log[ε/(d − 1)]. For example, for
d = 2 and using the theoretical value for χ, we have that
ηt(ε = 0.05) ≈ 4.1 and ηt(ε = 0.10) ≈ 3.5, which are in
great agreement with what it previously observed [16].

The most important outcome of this analysis is that of
a complete numerical and analytical description for the
fractal dimensions of the DBM, D(d, η), given by Eqs.
(2), (4) and (8), where the parameter χ was found under
different numerical and analytical procedures. Particu-
larly, by considering the hypothesis of maximum entropy
production, a complete parameter-free description is ob-
tained, that is in better agreement with the numerical
results then the mean-field approximation. In the case
of η = 1, that corresponds to the fractal dimensions of
DLA, D(d), we have a complete parameter-free analyti-
cal description that is in excellent agreement with reliable
numerical and theoretical results reported over the years.
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